Set - 5

Question 21 :

How do I rotate replication logs?

Answer :

In Version 3.23.28 you should use PURGE MASTER LOGS TO command after determining which logs can be deleted, and optionally backing them up first. In earlier versions the process is much more painful, and cannot be safely done without stopping all the slaves in the case that you plan to re-use log names. You will need to stop the slave threads, edit the binary log index file, delete all the old logs, restart the master, start slave threads,and then remove the old log files.

Question 22 :

How do I upgrade on a hot replication setup?

Answer :

If you are upgrading pre-3.23.26 versions, you should just lock the master tables, let the slave catch up, then run FLUSH MASTER on the master, and FLUSH SLAVE on the slave to reset the logs, then restart new versions of the master and the slave. Note that the slave can stay down for some time - since the master is logging all the updates, the slave will be able to catch up once it is up and can connect.
After 3.23.26, we have locked the replication protocol for modifications, so you can upgrade masters and slave on the fly to a newer 3.23 version and you can have different versions of MySQL running on the slave and the master, as long as they are both newer than 3.23.26.

Question 23 :

What issues should I be aware of when setting up two-way replication?

Answer :

MySQL replication currently does not support any locking protocol between master and slave to guarantee the atomicity of a distributed (cross-server) update. In in other words, it is possible for client A to make an update to co-master 1, and in the meantime, before it propagates to co-master 2, client B could make an update to co-master 2 that will make the update of client A work differently than it did on co-master 1. Thus when the update of client A will make it to co-master 2, it will produce tables that will be different than what you have on co-master 1, even after all the updates from co-master 2 have also propagated. So you should not co-chain two servers in a two-way replication relationship, unless you are sure that you updates can safely happen in any order, or unless you take care of mis-ordered updates somehow in the client code.
You must also realize that two-way replication actually does not improve performance very much, if at all, as far as updates are concerned. Both servers need to do the same amount of updates each, as you would have one server do. The only difference is that there will be a little less lock contention, because the updates originating on another server will be serialized in one slave thread. This benefit, though, might be offset by network delays.

Question 24 :

How can I use replication to improve performance of my system?

Answer :

You should set up one server as the master, and direct all writes to it, and configure as many slaves as you have the money and rackspace for, distributing the reads among the master and the slaves. You can also start the slaves with --skip-bdb, --low-priority-updates and --delay-key-write-for-all-tables to get speed improvements for the slave. In this case the slave will use non-transactional MyISAM tables instead of BDB tables to get more speed.

Question 25 :

What should I do to prepare my client code to use performance-enhancing replication?

Answer :

A: If the part of your code that is responsible for database access has been properly abstracted/modularized, converting it to run with the replicated setup should be very smooth and easy - just change the implementation of your database access to read from some slave or the master, and to awlays write to the master. If your code does not have this level of abstraction, setting up a replicated system will give you an opportunity/motivation to it clean up. You should start by creating a wrapper library /module with the following functions:

safe_ means that the function will take care of handling all the error conditions.

You should then convert your client code to use the wrapper library. It may be a painful and scary process at first, but it will pay off in the long run. All applications that follow the above pattern will be able to take advantage of one-master/many slaves solution. The code will be a lot easier to maintain, and adding troubleshooting options will be trivial. You will just need to modify one or two functions, for example, to log how long each query took, or which query, among your many thousands, gave you an error. If you have written a lot of code already, you may want to automate the conversion task by using Monty's replace utility, which comes with the standard distribution of MySQL, or just write your own Perl script. Hopefully, your code follows some recognizable pattern. If not, then you are probably better off re-writing it anyway, or at least going through and manually beating it into a pattern.

Note that, of course, you can use different names for the functions. What is important is having unified interface for connecting for reads, connecting for writes, doing a read, and doing a write.