Set - 5

Question 1 :

What is the difference between ADO and ADO.NET?

Answer :

ADO uses Recordsets and cursors to access and modify data. Because of its inherent design, Recordset can impact performance on the server side by tying up valuable resources. In addition, COM marshalling - an expensive data conversion process - is needed to transmit a Recordset. ADO.NET addresses three important needs that ADO doesn't address:

1. Providing a comprehensive disconnected data-access model, which is crucial to the Web environment
2. Providing tight integration with XML, and
3. Providing seamless integration with the .NET Framework (e.g., compatibility with the base class library's type system). From an ADO.NET implementation perspective, the Recordset object in ADO is eliminated in the .NET architecture. In its place, ADO.NET has several dedicated objects led by the DataSet object and including the DataAdapter, and DataReader objects to perform specific tasks. In addition, ADO.NET DataSets operate in disconnected state whereas the ADO RecordSet objects operated in a fully connected state.

In ADO, the in-memory representation of data is the RecordSet. In ADO.NET, it is the dataset. A RecordSet looks like a single table. If a RecordSet is to contain data from multiple database tables, it must use a JOIN query, which assembles the data from the various database tables into a single result table. In contrast, a dataset is a collection of one or more tables. The tables within a dataset are called data tables; specifically, they are DataTable objects. If a dataset contains data from multiple database tables, it will typically contain multiple DataTable objects. That is, each DataTable object typically corresponds to a single database table or view. In this way, a dataset can mimic the structure of the underlying database.

In ADO you scan sequentially through the rows of the RecordSet using the ADO MoveNext method. In ADO.NET, rows are represented as collections, so you can loop through a table as you would through any collection, or access particular rows via ordinal or primary key index. A cursor is a database element that controls record navigation, the ability to update data, and the visibility of changes made to the database by other users. ADO.NET does not have an inherent cursor object, but instead includes data classes that provide the functionality of a traditional cursor. For example, the functionality of a forward-only, read-only cursor is available in the ADO.NET DataReader object.

There is one significant difference between disconnected processing in ADO and ADO.NET. In ADO you communicate with the database by making calls to an OLE DB provider. In ADO.NET you communicate with the database through a data adapter (an OleDbDataAdapter, SqlDataAdapter, OdbcDataAdapter, or OracleDataAdapter object), which makes calls to an OLE DB provider or the APIs provided by the underlying data source.


Question 2 :

What is a Strong Name?

Answer :

A strong name consists of the assembly's identity its simple text name, version number, and culture information (if provided) plus a public key and a digital signature. It is generated from an assembly file (the file that contains the assembly manifest, which in turn contains the names and hashes of all the files that make up the assembly), using the corresponding private key. Assemblies with the same strong name are expected to be identical.

Strong names guarantee name uniqueness by relying on unique key pairs. No one can generate the same assembly name that you can, because an assembly generated with one private key has a different name than an assembly generated with another private key.

When you reference a strong-named assembly, you expect to get certain benefits, such as versioning and naming protection. If the strong-named assembly then references an assembly with a simple name, which does not have these benefits, you lose the benefits you would derive from using a strong-named assembly and revert to DLL conflicts. Therefore, strong-named assemblies can only reference other strong-named assemblies.

There are two ways to sign an assembly with a strong name:

1. Using the Assembly Linker (Al.exe) provided by the .NET Framework SDK.
2. Using assembly attributes to insert the strong name information in your code. You can use either the AssemblyKeyFileAttribute or the AssemblyKeyNameAttribute, depending on where the key file to be used is located.

To create and sign an assembly with a strong name using the Assembly Linker, at the command prompt, type the following command:
al /out: /keyfile:

In this command, assembly name is the name of the assembly to sign with a strong name, module name is the name of the code module used to create the assembly, and file name is the name of the container or file that contains the key pair.

The following example signs the assembly MyAssembly.dll with a strong name using the key file sgKey.snk.

al /out:MyAssembly.dll MyModule.netmodule /keyfile:sgKey.snk

To sign an assembly with a strong name using attributes

In a code module, add the AssemblyKeyFileAttribute or the AssemblyKeyNameAttribute, specifying the name of the file or container that contains the key pair to use when signing the assembly with a strong name. The following code example uses the AssemblyKeyFileAttribute with a key file called sgKey.snk.

[Visual Basic]
[C#]
[assembly:AssemblyKeyFileAttribute(@"....sgKey.snk")]


Question 3 :

What is a Manifest?

Answer :

An assembly manifest contains all the metadata needed to specify the assembly version requirements and security identity, and all metadata needed to define the scope of the assembly and resolve references to resources and classes. The assembly manifest can be stored in either a PE (Portable Executable) file (an .exe or .dll) with Microsoft intermediate language (MSIL) code or in a standalone PE (Portable Executable) file that contains only assembly manifest information. The following table shows the information contained in the assembly manifest. The first four items the assembly name, version number, culture, and strong name information make up the assembly identity.

Assembly name: A text string specifying the assembly name.

Version number: A major and minor version number, and a revision and build number. The common language runtime uses these numbers to enforce version policy.

Culture: Information on the culture or language the assembly supports. This information should be used only to designate an assembly as a satellite assembly containing culture- or language-specific information. (An assembly with culture information is automatically assumed to be a satellite assembly.) Strong name information: The public key from the publisher if the assembly has been given a strong name. List of all files in the assembly:

A hash of each file contained in the assembly and a file name. Note that all files that make up the assembly must be in the same directory as the file containing the assembly manifest.

Type reference information: Information used by the runtime to map a type reference to the file that contains its declaration and implementation. This is used for types that are exported from the assembly.

Information on referenced assemblies: A list of other assemblies that are statically referenced by the assembly. Each reference includes the dependent assembly's name, assembly metadata (version, culture, operating system, and so on), and public key, if the assembly is strong named.


Question 4 :

Creating a Key Pair?

Answer :

You can create a key pair using the Strong Name tool (Sn.exe). Key pair files usually have an .snk extension. To create a key pair At the command prompt, type the following command:

sn k

In this command, file name is the name of the output file containing the key pair. The following example creates a key pair called sgKey.snk.
sn -k sgKey.snk


Question 5 :

What is the difference between "using System.Data;" and directly adding the reference from "Add References Dialog Box"?

Answer :

When u compile a program using command line, u add the references using /r switch. When you compile a program using Visual Studio, it adds those references to our assembly, which are added using "Add Reference" dialog box. While "using" statement facilitates us to use classes without using their fully qualified names.

For example: if u have added a reference to "System.Data.SqlClient" using "Add Reference" dialog box then u can use SqlConnection class like this:

System.Data.SqlClient.SqlConnection

But if u add a "using System.Data.SqlClient" statement at the start of ur code then u can directly use SqlConnection class.
On the other hand if u add a reference using "using System.Data.SqlClient" statement, but don't add it using "Add Reference" dialog box, Visual Studio will give error message while we compile the program.